数学集合的含义与表示(高中数学集合的概念)
本文目录
高中数学集合的概念
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
扩展资料:
基数
集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
集合地位:
集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。
参考资料:百度百科-集合
数学中什么是集合
集合一般是在高中一年级的基础数学章节。是高中数学函数的基础哦~~关于集合的概念:点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.总之,集合:某些指定的对象集在一起就形成一个集合。集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。例如,由方程的所有解组成的集合,可以表示为{-1,1}.注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。格式:{x∈A|P(x)}含义:在集合A中满足条件P(x)的x的集合。例如,不等式的解集可以表示为:或所有直角三角形的集合可以表示为:注:(1)在不致混淆的情况下,可以省去竖线及左边部分。如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。注:何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。如:集合{1000以内的质数}
高中数学集合的概念是什么
集合的概念:一般地,研究对象统称为元素,一些元素组成的总体叫做集合,也简称集。
1、集合中元素的特性:确定性、互异性、无序性。
2、元素与集合的关系
(1)如果a是集合A的元素,就说a属于A,记作a∈A。
(2)如果a不是集合A的元素,就说a不属于A,记作a∉A。
3、常用数集及其记法
常用数集 简称 记法
全体非负整数的集合 非负整数集(自然数集) N
所有正整数的集合 正整数集 N* 或N+
全体整数的集合 整数集 Z
全体有理数的集合 有理数集 Q
全体实数的集合 实数集 R
4、集合的分类
(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合∅。
集合的表示方法
1、列举法:把集合中的元素一一列出来,写在大括号内。
2、描述法:把集合中的元素的公共属性描述出来,写在大括号内。
1、图示法
(1)文氏图:用一条封闭的曲线的内部来来表示的一个集合。
(2)数轴法
数学中的集合是什么意思
定义非正式的,一个集合就是将几个对象适当归类而作为一个整体。一般来说,集合为具有某种属性的事物的全体,或是一些确定对象的汇合。构成集合的事物或对象称作元素或成员。集合的元素可以是任何东西:数字,人,字母,别的集合,等等。类在更深层的公理化数学中,集合仅仅是一种特殊的类,是“良性类”,是能够成为其它类的元素的类。类区分为两种:一种是可以顺利进行类运算的“良性类”,我们把这种“良性类”称为集合;另一种是要限制运算的“本性类”,对于本性类,类运算是并不都能进行的。定义类A如果满足条件“”,则称类A为一个集合(简称为集),记为Set(A)。否则称为本性类。这说明,一个集合可以作为其它类的元素,但一个本性类却不能成为其它类的元素。因此可以理解为“本性类是最高层次的类”。
高中数学集合的符号意义和读法
A={1,2}读做集合A中有1,2元素
∪:并集。比如,A∪B表示集合A和集合B中所有元素组成的集合。
∩:交集。比如,A∩B表示既在集合A中又在集合B中的所有元素组成的集合。
∈:属于。比如,a∈A表示元素a属于集合A。
基数
集合中元素的数目称为集合的基数,集合A的基数记作card(A)。当其为有限大时,集合A称为有限集,反之则为无限集。一般的,把含有有限个元素的集合叫做有限集,含无限个元素的集合叫做无限集。
假设有实数x 《 y:
① :方括号表示包括边界,即表示x到y之间的数以及x和y;
②(x,y):小括号是不包括边界,即表示大于x、小于y的数 。
以上内容参考:百度百科-集合
集合的含义与表示
含义:集合是具有某种特定性质的事物的总体。表示:集合常用大写拉丁字母来表示,如:a,b,c…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个等式来表示的,例如:a={…}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。常用的有列举法和描述法。
更多文章:

jquery效果代码(jquery实现漂亮的二级下拉菜单代码)
2025年3月1日 17:50

android系统的优缺点(ios系统与android系统各自优缺点)
2025年3月7日 10:00

keyboard not found(电脑无法开机,显示Keyboard not found 是什么意思)
2025年2月11日 17:20

clash for android(clashforandroid更新失败)
2025年4月1日 13:20

painter什么意思(painter与paintist的区别)
2025年3月5日 21:40

handsome dancer(wawo,you can really dance抖音bgm是什么歌)
2025年3月28日 03:00

windowsxp如何恢复出厂设置(怎么把电脑系统恢复出厂设置)
2025年3月2日 15:30

atom编辑器安装教程(怎么将 Atom 配置成 Markdown 编辑器)
2025年2月25日 23:30

linux常用命令chmod的使用(linux chmod命令怎么用)
2025年3月22日 22:40

android sdk manager 无法更新(Android SDK Manager总是更新不了,还没法显示没有下载的东西)
2025年2月18日 23:00

c语言入门教学(为什么有的人不建议初学编程的人把C语言作为入门语言)
2025年2月22日 02:20