回归模型公式(回归方程的公式和例题)
本文目录
回归方程的公式和例题
y=bx+a回归分析regressionanalysis回归分析是处理多变量间相关关系的一种数学方法。相关关系不同于函数关系,后者反映变量间的严格依存性,而前者则表现出一定程度的波动性或随机性,对自变量的每一取值,因变量可以有多个数值与之相对应。在统计上研究相关关系可以运用回归分析和相关分析(correlationanalysis)。当自变量为非随机变量、因变量为随机变量时,分析它们的关系称回归分析;当两者都是随机变量时,称为相关分析。回归分析和相关分析往往不加区分。广义上说,相关分析包括回归分析,但严格地说。两者是有区别的。具有相关关系的两个变量ξ和η,它们之间既存在着密切的关系,又不能由一个变量的数值精确地求出另一变量的值。通常选定ξ=x时η的数学期望作为对应ξ=x时η的代表值,因为它反映ξ=x条件下η取值的平均水平。这样的对应关系称为回归关系。根据回归分析可以建立变量间的数学表达式,称为回归方程。回归方程反映自变量在固定条件下因变量的平均状态变化情况。相关分析是以某一指标来度量回归方程所描述的各个变量间关系的密切程度。相关分析常用回归分析来补充,两者相辅相成。若通过相关分析显示出变量间关系非常密切,则通过所建立的回归方程可获得相当准确的取值。通过日归分析可以解决以下问题:1.可建立交量间的数学表达式――通常称为经验公式。2.利用概率统计基础知识进行分析,从而可以判断所建立的经验公式的有效性。3.进行因素分析,确定影响某一变量的若干变量(因素)中,何者为主要,何者为次要,以及它们之间的关系。具有相关关系的变量之间虽然具有某种不确定性,但是,通过对现象的不断观察可以探索出它们之间的统计规律,这类统计规律称为回归关系。有关回归关系的理论、计算和分析称为回归分析。回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。把两个或两个以上定距或定比例的数量关系用函数形势表示出来,就是回归分析要解决的问题。回归分析是一种非常有用且灵活的分析方法,其作用主要表现在以下几个方面:(1)判别自变量是否能解释因变量的显著变化----关系是否存在;(2)判别自变量能够在多大程度上解释因变量----关系的强度;(3)判别关系的结构或形式----反映因变量和自变量之间相关的数学表达式;(4)预测自变量的值;(5)当评价一个特殊变量或一组变量对因变量的贡献时,对其自变量进行控制。回归分析可以分为简单线性回归分析和多元线性回归分析。(一)简单线性回归分析如果发现因变量y和自变量x之间存在高度的正相关,可以确定一条直线的方程,使得所有的数据点尽可能接近这条拟合的直线。简单回归分析的模型可以用以下方程表示:y=a+bx其中:y为因变量,a为截距,b为相关系数,x为自变量。(二)多元线性回归分析多元线性回归是简单线性回归的推广,指的是多个因变量对多个自变量的回归。其中最常用的是只限于一个因变量但有多个自变量的情况,也叫多重回归。多重回归的一般形式如下:y=a+b1x1+b2x2+b3x3+……+bkxka代表截距,b1,b2,b3,……,bk为回归系数。
回归分析法计算公式是什么
相关计算公式为:a=。
回归直线法是根据若干期业务量和资金占用的历史资料,运用最小平方法原理计算不变资金和单位产销量所需变动资金的一种资金习性分析方法。
回归分析法主要解决的问题:
1、确定变量之间是否存在相关关系,若存在,则找出数学表达式。
2、根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。
随机模型回归线公式
随机模型回归线公式:H=3R-2L。
要根据最优返回线的计算公式可知,计算时需要“+L”,即现金存量的下限越高,则最优现金返回线越高。根据H=3R-2L,“3R”中有3个L,减去2L,还存在一个L的,因此现金存量的下限越高,现金存量的上限也会越高。
随机效应模型的用途
随机效应最直观的用处就是把固定效应推广到随机效应。注意,这时随机效应是一个群体概念,代表了一个分布的信息or特征,而对固定效应而言,我们所做的推断仅限于那几个固定的(未知的)参数。例如,如果要研究一些水稻的品种是否与产量有影响。
回归方程公式
y=bx+a回归分析 regression analysis 回归分析是处理多变量间相关关系的一种数学方法。相关关系不同于函数关系,后者反映变量间的严格依存性,而前者则表现出一定程度的波动性或随机性,对自变量的每一取值,因变量可以有多个数值与之相对应。在统计上研究相关关系可以运用回归分析和相关分析(correlation analysis)。当自变量为非随机变量、因变量为随机变量时,分析它们的关系称回归分析;当两者都是随机变量时,称为相关分析。回归分析和相关分析往往不加区分。广义上说,相关分析包括回归分析,但严格地说。两者是有区别的。具有相关关系的两个变量ξ和η,它们之间既存在着密切的关系,又不能由一个变量的数值精确地求出另一变量的值。通常选定ξ=x时η的数学期望作为对应ξ=x时η的代表值,因为它反映ξ=x条件下η取值的平均水平。这样的对应关系称为回归关系。根据回归分析可以建立变量间的数学表达式,称为回归方程。回归方程反映自变量在固定条件下因变量的平均状态变化情况。相关分析是以某一指标来度量回归方程所描述的各个变量间关系的密切程度。相关分析常用回归分析来补充,两者相辅相成。若通过相关分析显示出变量间关系非常密切,则通过所建立的回归方程可获得相当准确的取值。通过日归分析可以解决以下问题: 1.可建立交量间的数学表达式――通常称为经验公式。 2.利用概率统计基础知识进行分析,从而可以判断所建立的经验公式的有效性。 3.进行因素分析,确定影响某一变量的若干变量(因素)中,何者为主要,何者为次要,以及它们之间的关系。具有相关关系的变量之间虽然具有某种不确定性,但是,通过对现象的不断观察可以探索出它们之间的统计规律,这类统计规律称为回归关系。有关回归关系的理论、计算和分析称为回归分析。回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。把两个或两个以上定距或定比例的数量关系用函数形势表示出来,就是回归分析要解决的问题。回归分析是一种非常有用且灵活的分析方法,其作用主要表现在以下几个方面:(1) 判别自变量是否能解释因变量的显著变化----关系是否存在;(2) 判别自变量能够在多大程度上解释因变量----关系的强度;(3) 判别关系的结构或形式----反映因变量和自变量之间相关的数学表达式;(4) 预测自变量的值;(5) 当评价一个特殊变量或一组变量对因变量的贡献时,对其自变量进行控制。回归分析可以分为简单线性回归分析和多元线性回归分析。(一) 简单线性回归分析如果发现因变量Y和自变量X之间存在高度的正相关,可以确定一条直线的方程,使得所有的数据点尽可能接近这条拟合的直线。简单回归分析的模型可以用以下方程表示:Y = a + bx其中:Y为因变量,a为截距,b为相关系数,x为自变量。(二) 多元线性回归分析多元线性回归是简单线性回归的推广,指的是多个因变量对多个自变量的回归。其中最常用的是只限于一个因变量但有多个自变量的情况,也叫多重回归。多重回归的一般形式如下:Y = a + b1X1 + b2X2 + b3X3 +……+ bkXka代表截距, b1,b2,b3,……,bk为回归系数。
线性回归方程公式是什么
线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。
线性回归方程公式求法:
第一:用所给样本求出两个相关变量的(算术)平均值:
x_=(x1+x2+x3+...+xn)/n
y_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)
分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_
分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算b:b=分子/分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
应用
线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
以上内容参考 百度百科-线性回归方程
更多文章:
java学生编程经典案例(Java编程案例习题= = 求解!)
2025年4月12日 11:00
cms建站系统有哪些(需要一个自助建站系统(CMS),哪个最好用)
2025年3月7日 15:00
confusion是什么意思(puzzle ,confusion 有哪些不同谢谢!)
2025年4月5日 16:30
grid on在matlab中是什么意思(matlab中的grid on语句什么意思如何使用,谢谢)
2025年3月5日 10:10
selinux未处于严格模式(什么是selinux 为什么使用 SE Linux)
2025年3月22日 06:30
js中时钟特效代码(js Canvas实现的日历时钟案例有哪些)
2025年2月19日 08:30
asynctask源码分析(android.os.asynctask需要什么jar包)
2025年3月28日 06:20
springboard(重启springboard什么意思)
2025年2月18日 00:10
elbow怎么读(这种英语单词 elbow 和 swallow 怎么读)
2025年3月11日 15:10
visibility visible(position:absolute;visibility:visible 是什么意思)
2025年3月15日 20:20
ip地址dhcp是什么意思(手机上ip设置里的dhcp是什么)
2025年3月15日 12:40